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Mobile Ad Hoc Networks (MANETs)

■ Consist of wireless mobile hosts which form a temporary network
◆ without the aid of established infrastructure

(e. g. base stations)
◆ without centralised administration

(e. g. mobile switching centers)

■ Every host in a MANET
◆ can roam around freely
◆ can only communicate with hosts which are currently in its

transmission range
➥ Multi-hop scenario:

Packets must be forwarded to their destination
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Multi-Hop Scenario
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The Broadcast Storm Problem

■ Straightforward realisation of global broadcasting in a MANET
➥ Simple Flooding:

Every host retransmits a received broadcast message once.

■ This leads to the so called Broadcast Storm Problem
consisting of

◆ Redundancy

◆ Contention

◆ Collision
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Redundancy (1)

■ Problem:
When a mobile host retransmits a broadcast message, all its
neighbors might already have received this message.

➥ The bandwidth of the network gets reduced by
unnecessary broadcasts.
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Redundancy (2)

■ We are interested in the additional
coverage of a node
(grey shaded area)

■ The additional coverage of B: πr2 − INTC(d)

where INTC(d) = 4
∫ r

d/2

√
r2 − x2dx

■ Expected additional coverage of a node:
∫ r

0
2πx·[πr2−INTC(x)]

πr2 dx ≈ 0.41πr2
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Redundancy (3)

■ If a host received a broadcast message from more than one host,
the expected additional coverage decreases.

■ Expected additional coverage EAC(k) of a host
after receiving a broadcast k times:

➥ Many rebroadcasts are superfluous in the case of simple flooding.
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Contention (1)

■ Problem:
If n nearby hosts try to rebroadcast a message nearly the
same time, they are likely to compete with each other.

■ Simple case of n = 2:

■ The probability of contention is INTC(x)/πr2

■ For arbitrarily located B’s:
∫ r

0
2πx·INTC(x)/(πr2)

πr2 dx ≈ 59%
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Contention (2)

■ The probability cf(n, k) of having k contention-free host
among n receiving hosts:

➥ Contention is likely to occur, especially in dense networks.
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Collision

■ Problem:
Broadcast messages are rather sent
simultaneously, such that collisions get more
probable.

■ Reason:
CSMA/CA style communication
◆ without RTS/CTS dialogues
◆ without acknowledgement packets

■ Two problems:
◆ two hosts decide to transmit a message at around the same time
◆ the hidden station problem
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Observation

■ Redundancy, Contention, Collision are serious problems.

■ All problems have one cause in common:

They increase with the number of hosts which
unnecessarily rebroadcast a message.

■ Solution:
Inhibit some nodes in the MANET from rebroadcasting.

➥ Select a forward node set
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Introduction to Self-Pruning (1)

■ Self-Pruning: Every node decides on its own whether to
forward a message or not.

■ A forward node set has to form a connected dominating set.

◆ A set A of nodes is called dominating set of a graph G, if every
node is either in the set or has a neighbor in the set.

◆ dominating set:
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Introduction to Self-Pruning (2)

■ Ideal forward node set:
minimum connected dominating set (MCDS).

■ A minimum connected dominating set (MCDS) is a connected
dominating set (CDS) with a minimal number of nodes.

■ But:

◆ MCDS problem is NP complete.

◆ Global network information is needed for computation.

➥ Define coverage condition which only results in a nearly
optimal CDS but is suitable for computation.
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Coverage Condition I

■ Coverage Condition I:
Node v has a non-forward node status if for any two
neighbors u and w, a replacement path exists that connects
u and w via several intermediate nodes (if any) with higher
priority values than the priority value of v.
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Coverage Condition I

■ Disadvantage of Coverage Condition I:

◆ Every node has to check the condition for every pair of
neighbors.

◆ There are
(

deg(v)
2

)

∈ O(deg(v)2) such pairs

➥ Overall computation complexity: O(n∆2)

n – number of nodes
∆ – maximum vertex degree
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Coverage Condition II

■ Coverage Condition II:
Node v has a non-forward node status if it has a coverage set. In addition the
coverage set belongs to a connected component of the subgraph induced
from nodes with higher priority values than the priority value of v.

■ A set C(v) is called a coverage set of v if the neighbor set of v can be covered by
nodes in C(v).
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Coverage Condition II

■ Coverage Condition II:
Node v has a non-forward node status if it has a coverage set. In addition the
coverage set belongs to a connected component of the subgraph induced
from nodes with higher priority values than the priority value of v.

■ A set C(v) is called a coverage set of v if the neighbor set of v can be covered by
nodes in C(v).
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Coverage Condition II

■ Computation:
◆ Decompose the graph into connected components V1, V2, . . . , Vl that only contain

nodes with a higher priority than v via depth-first search. ( O(n∆) )
◆ Compute for each Vi the set of covered neighbors N(Vi) :=

⋃

w∈Vi
N(w)

and check if there exists a Vi such that N(v) ⊆ N(Vi). ( O(n∆) )

➥ Overall computation complexity: O(n∆)
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Coverage Condition I & II Comparison

■ Coverage condition I is stronger than coverage condition II.
◆ The existence of a connected coverage set for v implies the

existence of a replacement path for any pair of v’s neighbors.

◆ But generally the reverse situation does not hold:

➥ Coverage condition II has a lower computation complexity
than coverage condition I but may result in larger forward
node sets.
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k-Hop Neighbor Set Nk(v)

■ For deciding whether to be a forward node or a non-forward
node, a node can only use small neighborhood information:
➥ The k-hop neighbor set Nk(v)

■ k ≥ 5:
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k-Hop Neighbor Set Nk(v)

■ For deciding whether to be a forward node or a non-forward
node, a node can only use small neighborhood information:
➥ The k-hop neighbor set Nk(v)

■ k = 2:
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Simulation Setup & Parameters

■ Because we are mainly interested in the size of the forward
node set, we are assuming an ideal MAC layer without
contention or collision.

■ Simulation parameters:
◆ number of hosts n

◆ average node degree d (density of the network)

■ n hosts placed randomly in a 100 × 100 area.

■ The transmission range r has been adjusted to
produce nd

2 links.
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Size k of Neighbor Set (Sparse Network)
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Size k of Neighbor Set (Dense Network)
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Type of Coverage Condition (Sparse Network)



Introduction

The Broadcast Storm Problem

Self-Pruning

Simulation results

● Simulation Setup

● Neighborhood Information

● Coverage Condition

● Summary

Frank Radmacher, July 15, 2004 Efficient Flooding in Ad Hoc Networks - p. 26/27

Type of Coverage Condition (Dense Network)
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Summary

What we have learned today:

■ Basics of Mobile Ad Hoc Networks (MANETs)

■ The Broadcast Storm Problem:
◆ Redundancy
◆ Contention
◆ Collision

■ How to avoid these problems:
◆ Generic approach based on Self-Pruning

■ coverage conditions as approximation of a MCDS
➥ Through simulation results we obtain a suitable

configuration.

✌ Thank you for your attention.
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Applications

■ scientific use
◆ sensor networks
◆ archaeological or ecological expeditions

■ civilian use
◆ disaster recovery
◆ search and rescue

■ military use
◆ battlefield
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Why Broadcasting in a MANET?

■ Broadcasts are common operations in MANETs

■ Necessary for solving particular tasks in a MANET
◆ sending alarm signals
◆ paging particular hosts
◆ possible last resort realisation of uni- and multicast

messages in networks with a rapidly changing topology
◆ many routing protocols use broadcasts to exchange

routing information
➥ Due to the dynamic topology in MANETs, we expect

broadcasts to occur more frequently.
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Maximal Replacement Path

minimum node: In a path P = (u, v1, ..., vn, w) a minimum node is the intermediate node
vi with lowest priority value.

max-min node: Assume {P1, . . . , Pn} is the set of all replacement paths for node v that
connect u and w. Then a max-min node for (u, w, v) is the node with the highest
priority value of all minimum nodes in P1, . . . , Pn.

MAXMIN(u, w, v)

1: if u and w are directly connected then return ∅.

2: Find the max-min node x for (u, w, v).

3: return path (MAXMIN(u, x, v), x, MAXMIN(x, w, v)).

➥ Maximal replacement path: (u,MAXMIN(u, w, v), w)
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Routing History

■ Our approach does not consider the source of a broadcast.
■ No need to transmit a broadcast to nodes where it comes from.

➥ Consider the routing history or visited node set Dh(v),
which contains the last h recent nodes.
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Priority Function

■ Different priority function are possible:

◆ unique node id

◆ node degree

◆ neighborhood connectivity

= |pairs of not directly connected neighbors|
|pairs of any neighbors|
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Approximation of the MCDS (Sparse Network)

■ Base – Base Configuration:
Coverage condition I with 2-hop neighbor set information

■ END – Enhanced neighbor-designating algorithm
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Approximation of the MCDS (Dense Network)

■ Base – Base Configuration:
Coverage condition I with 2-hop neighbor set information

■ END – Enhanced neighbor-designating algorithm
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